欢迎光临51漫画51漫画 | 联系我们

某某工厂-专业生产加工、定做各种金属工艺品

国内金属工艺品加工专业厂家
全国服务电话 全国服务电话 400-123-4567
51漫画新闻资讯
联系我们
全国服务电话:400-123-4567

传真:+86-123-4567

手机:138 0000 000

邮箱:admin@admin.com

地址:广东省广州市51漫画

常用金属材料的焊接
发布时间:2025-02-12 10:07 来源:网络


1.什么是焊接性?试述碳钢的焊接性。

焊接性是指材料在限定的施工条件下焊接成按规定设计要求的构件,并满足预定服役要求的能力。焊接性受材料、焊接方法、构件类型及使用要求四个因素的影响。

碳钢是以铁元素为基础的,铁碳合金,碳为合金元素,其碳的质量分数不超过1%,此外,锰的质量分数不超过1.2%,硅的质量分数不超过0.5%,后两者皆不作为合金元素。其它元素如Ni、Cr、Cu等均控制在残余量的限度以内,更不作为合金元素。杂质元素如S、P、O、N等,根据钢材品种和等级的不同,均有严格限制。因此,碳钢的焊接性主要取决于含碳量,随着含碳量的增加,焊接性逐渐变差,其中以低碳钢的焊接性最好,见表1。

常用金属材料的焊接(图1)

2.什么是碳当量?碳钢的碳当量如何计算?

把钢中合金元素(包括碳)的含量按其作用换自成碳的相当含量,称为该种钢材的碳当量,可作为评定钢材焊接性的一种参考指标。

碳钢中的元素除C外,主要是Mn和Si,它们的含量增加,焊接性变差,但其作用不及碳强烈。国际焊接学会推荐的碳当量公式为

常用金属材料的焊接(图2)

CE(IIW)=C+Mn/6+ (Cr+Mo+V)/5+ (Si+Ni +Cu)/15 (质量分数)(%)

随着碳当量值的增加,钢材的焊接性会变差。当CE值大于0.4%~0.6%时,冷裂纹的敏感性将增大,焊接时需要采取预热、后热及用低氢型焊接材料施焊等一系列工艺措施。

3.利用碳当量值评价钢材焊接性有何局限性?

碳当量值只能在一定范围内,对钢材概括地、相对地评价其焊接性,这是因为:

1)如果两种钢材的碳当量值相等,但是含碳量不等,含碳量较高的钢材在施焊过程中容易产生淬硬组织,其裂纹倾向显然比含碳量较低的钢材来得大,焊接性较差。因此,当钢材的碳当量值相等时,不能看成焊接性就完全相同。

2)碳当量计算值只表达了化学成分对焊接性的影响,没有考虑到冷却速度不同,可以得到不同的组织,冷却速度快时,容易产生淬硬组织,焊接性就会变差。

3)影响焊缝金属组织从而影响焊接性的因素,除了化学成分和冷却速度外,还有焊接循环中的最高加热温度和在高温停留时间等参数,在碳当量值计算公式中均没有表示出来。

因此,碳当量值的计算公式只能在一定的钢种范围内,概括地、相对地评价钢材的焊接性,不能作为准确的评定指标。

4.试述低碳钢的焊接性。

由于低碳钢含碳量低,锰、硅含量也少,所以,通常情况下不会因焊接而产生严重硬化组织或淬火组织。低碳钢焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良 。

但在少数情况下,焊接时也会出现困难:

1)采用旧冶炼方法生产的转炉钢含氮量高,杂质含量多,从而冷脆性大,时效敏感性增加,焊接接头质量降低,焊接性变差。

2)沸腾钢脱氧不完全,含氧量较高,P等杂质分布不均,局部地区含量会超标,时效敏感性及冷脆敏感性大,热裂纹倾向也增大。

3)采用质量不符合要求的焊条,使焊缝金属中的碳、硫含量过高,会导致产生裂纹。如某厂采用酸性焊条焊接Q235-A钢时,因焊条药皮中锰铁的含碳量过高,会引起焊缝产生热裂纹。

4)某些焊接方法会降低低碳钢焊接接头的质量。如电渣焊,由于线能量大,会使焊接热影响区的粗晶区晶粒长得十分粗大,引起冲击韧度的严重下降,焊后必需进行细化晶粒的正火处理,以提高冲击韧度。

总之,低碳钢是属于焊接性最好、最容易焊接的钢种,所有焊接方法都能适用于低碳钢的焊接。

5.低碳钢焊接时,如何正确地选用焊接材料?

1)手弧焊焊条的选用 常用低碳钢Q235的抗拉强度平均值为417.5MPa,根据等强度原则,与之匹配的焊条应为E43系列。几种不同钢号的低碳钢手弧焊时焊条的选用,见表2。

常用金属材料的焊接(图3)

2)埋弧焊焊丝和焊剂的匹配选用 低碳钢埋弧焊时焊丝和焊剂的匹配选用,见表3。

常用金属材料的焊接(图4)

3)CO2焊丝的选用 实芯焊丝选用牌号为H08Mn2Si和H08Mn2SiA两种,焊后熔敷金属强度偏高。药芯焊丝选用牌号为YJ502-1、YJ506-2、YJ506-3、YJ506-4。

4)电渣焊焊丝和焊剂的匹配选用 电渣焊熔池温度比埋弧焊低,所以焊剂中的硅、锰还原作用弱,应选用含锰、含硅量较高的焊丝。常选用H10Mn2、H10MnSi焊丝配合焊剂HJ360或H10MnSi焊丝配合焊剂HJ431。

6.低碳钢在低温下如何施焊?

严冬条件下焊接低碳钢结构时,由于焊接接头的冷却速度快,使裂纹倾向增大,特别是厚大结构的第一道焊缝容易开裂,为此必需采取如下工艺措施:51漫画

1)焊前预热,焊接过程中严格保持层间温度不应低于预热温度。

2)采用低氢或超低氢焊接材料。

3)定位焊时加大焊接电流,减慢焊接速度,适当增加定位焊缝的截面积和长度,必要时进行预热。

4)整条焊缝应尽量连续焊完,避免中断。

5)不应坡口面以外的母材上进行引弧,熄弧时需填满弧坑。

6)尽可能不在低温条件下进行弯板、矫正和装配焊件。

各种金属结构低温焊接时的预热温度见表4。管道、压力容器低温焊接时的预热温度见表5。

常用金属材料的焊接(图5)

7.试述中碳钢的焊接性。

中碳钢的碳的质量分数为0.25%~0.60%。当碳的质量分数接近0.25%而含锰量不高时,焊接性良好。随着含碳量的增加,焊接性逐渐变差。如果碳的质量分数为0.45%左右而仍按焊接低碳钢常用的工艺施焊时,在热影响区可能会产生硬脆的马氏体组织,易于开裂,即形成冷裂纹。

焊接时,相当数量的母材被熔化进入焊缝,使焊缝的含碳量增高,促使在焊缝中产生热裂纹,特别是当硫的杂质控制不严时,更易出现。这种裂纹在弧坑处更为敏感,分布在焊缝中的热裂纹于是与焊缝的鱼鳞状波纹线相垂直。

8.中碳钢焊接时,如何正确地选用焊条?

中碳钢的焊接目前大都采用手弧焊。为提高焊接接头的抗裂性,应选用低氢型焊条。个别情况下,也可采用钛钙型和钛铁矿型酸性焊条,但此时应采取严格的工艺措施,如焊前预热、减少熔合比(降低焊缝含碳量)等。

中碳钢手弧焊时焊条的选用,见表6。

常用金属材料的焊接(图6)

特殊情况下,中碳钢焊接时可采用铬镍不锈钢焊条,如E0-19-10-16(A102)、E0-19-10-5(A107)、E1-23-13-16(A302)、E1-23-13-15(A307)、E2-26-21-16(A402)、E2-26-21-15(A407)等,因奥氏体焊缝金属的塑性良好,可以减小焊接接头应力,即使焊件焊前不预热,也可避免热影响区产生冷裂纹。

9.试述中碳钢的焊接工艺要点。

1)预热 预热有利于减低中碳钢热影响区的最高硬度,防止产生冷裂纹,这是焊接中碳钢的主要工艺措施,预热还能改善接头塑性,减小焊后残余应力。通常,35和45钢的预热温度为150~250℃含碳量再高或者因厚度和刚度很大,裂纹倾向大时,可将预热温度提高至250~400℃。51漫画

若焊件太大,整体预热有困难时,可进行局部预热,局部预热的加热范围为焊口两侧各150~200mm。

2)焊条 条件许可时优先选用碱性焊条。

3)坡口形式 将焊件尽量开成U形坡口式进行焊接。如果是铸件缺陷,铲挖出的坡口外形应圆滑,其目的是减少母材熔入焊缝金属中的比例,以降低焊缝中的含碳量,防止裂纹产生。

4)焊接工艺参数 由于母材熔化到第一层焊缝金属中的比例最高达30%左右,所以第一层焊缝焊接时,应尽量采用小电流、慢焊接速度,以减小母材的熔深。

5)焊后热处理 焊后最好对焊件立即进行消除应力热处理,特别是对于大厚度焊件、高刚性结构件以及严厉条件下(动载荷或冲击载荷)工作的焊件更应如此。消除应力的回火温度为600~650℃。

若焊后不能进行消除应力热处理,应立即进行后热处理。

10.试述高碳钢的焊接工艺要点。

1)焊接性 当高碳钢的碳的质量分数大于0.60%时,焊后的硬化、裂纹敏感倾向更大,因此焊接性极差,不能用于制造焊接结构。常用于制造需要更硬度或耐磨的部件和零件,其焊接工作主要是焊补修复。

2)焊条选用 由于高碳钢的抗拉强度大都在675MPa以上,所以常用的焊条型号为E7015、E6015,对构件结构要求不高时可选用E5016、E5015焊条。此外,亦可采用铬镍奥氏体钢焊条进行焊接。

3)焊接工艺

①由于高碳钢零件为了获得高硬度和耐磨性,材料本身都需经过热处理,所以焊前应先进行退火,才能进行焊接。

②焊件焊前应进行预热,预热温度一般为250~350℃以上,焊接过程中必需保持层间温度不低于预热温度。

③焊后焊件必需保温缓冷,并立即送入炉中在650℃进行消除应力热处理。

11.试述低合金高强钢的焊接性。

强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:

1)热影响区的淬硬倾向 含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。

2)冷裂纹 低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。例如,材料为18MnMoNb钢壁厚115mm的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。

常用金属材料的焊接(图7)

低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。

3)热裂纹 一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。

强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。

4)粗晶区脆化 热影响区中被加热至1100℃以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。

12.试述低合金高强钢焊接时的主要工艺措施。

1)预热 预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。

2)焊接线能量的选择 含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。

对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。

3)后热及焊后热处理 后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。

对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。

焊后立即进行高温回火的焊件,无需再进行后热处理。

13.低合金高强钢焊接时,如何正确地选用焊接材料?

总的原则是根据等强度的要求,即熔敷金属的强度等级应与母材在同一档次来选用焊接材料,具体选用,见表7。

常用金属材料的焊接(图8)

常用金属材料的焊接(图9)

14.试述16Mn钢的焊接工艺。

16Mn钢属于碳锰钢,碳当量为0.345%~0.491%,屈服点等于343MPa(强度级别属于343MPa级)。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。不同板厚及不同环境温度下16Mn钢的预热温度,见表8。


常用金属材料的焊接(图10)


16Mn钢手弧焊时应选用E50型焊条,如碱性焊条E5015、E5016,对于不重要的结构,也可选用酸性焊条E5003、E5001。对厚度小、坡口窄的焊件,可选用E4315、E4316焊条。

16Mn钢埋弧焊时H08MnA焊丝配合焊剂HJ431(开I形坡口对接)或H10Mn2焊丝配合焊剂HJ431(中板开坡口对接),当需焊接厚板深坡口焊缝时,应选用H08MnMoA焊丝配合焊剂HJ431。

16Mn钢是目前我国应用最广的低合金钢,用于制造焊接结构的16Mn钢均为16MnR和16Mng钢。

非铁金属的焊接

(一)铜及铜合金的焊接

存在问题:

(1)难熔合 铜的导热系数大,焊接时散热快,要求焊接热源集中,且焊前必须预热,否则,易产生未焊透或未熔合等缺陷。

(2)裂纹倾向大 铜在高温下易氧化,形成的氧化亚铜(Cu2O)与铜形成低熔共晶体(Cu2O+Cu)分布在晶界上,容易产生热裂纹。

(3)焊接应力和变形较大 这是因为铜的线胀系数大,收缩率也大,且焊接热影响区宽的缘故。

(4)容易产生气孔 气孔主要是由氢气引起的,液态铜能够溶解大量的氢,冷却凝固时,溶解度急剧下降,来不及逸出的氢气即在焊缝中形成氢气孔。

此外,焊接黄铜时,会产生锌蒸发(锌的沸点仅907℃),一方面使合金元素损失,造成焊缝的强度、耐蚀性降低,另一方面,锌蒸汽有毒,对焊工的身体造成伤害。

焊接方法:氩弧焊、气焊和手工电弧焊,其中氩弧焊是焊接紫铜和青铜最理想的方法,黄铜焊接常采用气焊,因为气焊时可采用微氧化焰加热,使熔池表面生成高熔点的氧化锌薄膜,以防止锌的进一步蒸发,或选用含硅焊丝,可在熔池表面形成致密的氧化硅薄膜,既可以阻止锌的蒸发,又能对焊缝起到保护作用。

为保证焊接质量,在焊接铜及铜合金时还应采取以下措施:

(1)为了防止Cu2O的产生,可在焊接材料中加入脱氧剂,如采用磷青铜焊丝,即可利用磷进行脱氧。

(2)清除焊件、焊丝上的油、锈、水分,减少氢的来源,避免气孔的形成。

(3)厚板焊接时应以焊前预热来弥补热量的损失,改善应力的分布状况。焊后锤击焊缝,减小残余应力。焊后进行再结晶退火,以细化晶粒,破坏低熔共晶。

(二)铝及铝合金的焊接

铝具有密度小、耐腐蚀性好、很高的塑性和优良的导电性、导热性以及良好的焊接性等优点,因而铝及铝合金在航空、汽车、机械制造、电工及化学工业中得到了广泛应用。

铝及铝合金在焊接时的主要问题是:

(1)铝及铝合金表面极易生成一层致密的氧化膜(Al2O3),其熔点(2050℃)远远高于纯铝的熔点(657℃),在焊接时阻碍金属的熔合,且由于密度大,容易形成夹杂。

(2)液态铝可以大量溶解氢,铝的高导热性又使金属迅速凝固,因此液态时吸收的氢气来不及析出,极易在焊缝中形成气孔。

(3)铝及铝合金的线膨胀系数和结晶收缩率很大,导热性很好,因而焊接应力很大,对于厚度大或刚性较大的结构,焊接接头容易产生裂纹。

(4)铝及铝合金高温时强度和塑性极低,很容易产生变形,且高温液态无显著的颜色变化,操作时难以掌握加热温度,容易出现烧穿、焊瘤等缺陷。

焊接方法:氩弧焊、电阻焊、气焊,其中氩弧焊应用最广,电阻焊应用也较多,气焊在薄件生产中仍在采用。

电阻焊焊接铝合金时,应采用大电流、短时间通电,焊前必须清除焊件表面的氧化膜。

如果对焊接质量要求不高,薄壁件可采用气焊,焊前必须清除工件表面氧化膜,焊接时使用焊剂,并用焊丝不断破坏熔池表面的氧化膜,焊后应立即将焊剂清理干净,以防止焊剂对焊件的腐蚀。

为保证焊接质量,铝及铝合金在焊接时应采取以下工艺措施:

(1)焊前清理,去除焊件表面的氧化膜、油污、水分,便于焊接时的熔合,防止气孔、夹渣等缺陷。清理方法有化学清理椝嵯椿蚣钕矗登謇項用钢丝刷或刮刀清除表面氧化膜及油污。

(2)对厚度超过5~8mm的焊件,预热至100℃~300℃,以减小焊接应力,避免裂纹,且有利于氢的逸出,防止气孔的产生。

(3)焊后清理残留在接头处的焊剂和焊渣,防止其与空气、水分作用,腐蚀焊件。可用10%的硝酸溶液浸洗,然后用清水冲洗、烘干。

声明:本文根据网络资料编辑整理汇总制作,供同行学习、交流用途。版权归原文作者所有。如需转发,请注明出处。如有不妥,请联系删除。


51漫画 51漫画